defforward(self, x): # Max pooling over a (2, 2) window x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) # If the size is a square you can only specify a single number x = F.max_pool2d(F.relu(self.conv2(x)), 2) x = x.view(-1, self.num_flat_features(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x
defnum_flat_features(self, x): size = x.size()[1:] # all dimensions except the batch dimension num_features = 1 for s in size: num_features *= s return num_features
defexecute(self): # the forward pass. we will also accumulate the loss function loss = 0. for _, layer, bottom, top in self._forward_order: loss += layer.forward(bottom, top) # the backward pass for _, layer, bottom, top, propagate_down in self._backward_order: layer.backward(bottom, top, propagate_down) return loss
defupdate(self): for _, layer, _, _ in self._forward_order: layer.update()